Summary of CDR Server Link Capabilities

Alan Meyer

Revised March 9, 2010

This document summarizes the CDR software support for implementing links within and among CDR XML documents. It is an attempt to provide a user perspective on how linking works.

The document describes the state of software support for linking as it exists in the CDR Server as of this writing.

General Information about Links

The CDR software allows any field to contain a link by declaring it to have a linking XML attribute and by filling in certain table entries in the server to describe the link. Thus to make a field a linking field, we must do the following:

Define one of the linking attributes ("cdr:ref", "cdr:href", "cdr:xref") as legal in the schema definition of an element of the field. Only one of these attributes should be used in any element.

Create entries in certain tables in the server database that tell the server what kind of link is allowed in this field, what it may link to, and possibly other information. See the section on validation for more on this.

If it is decided to declare an element as a link element, no server software needs to be written or modified. It is only necessary to update the schema and the link control database tables to support it. The link validation software reads the database tables to find out which elements are links and what constraints exist on the linking.
Links can be divided into Internal links and External links.

Internal links link from one XML document in the CDR to a different XML document, or to a fragment of the same or a different XML document, in the CDR.

External links link from a document in the CDR to some resource outside the CDR.

Internal Links

Internal links always specify a CDR XML document. They may also further specify a specific fragment in an XML document, i.e., a specific element inside the target document (see below.)

Linking to non-XML objects, such as Microsoft Word documents, PDF files, and multimedia files is also possible but it is done indirectly by linking to a SupplementaryInfo or Media XML document in the CDR which contains a description of the object. The SupplementaryInfo or Media document contains XML structured information describing the contents of the non-XML object. Internally in the database, the SupplementaryInfo or Media document is associated with a "blob" (binary large object) in the database that contains the actual bytes of the Word, PDF, JPEG, MP3, or whatever kind of non-XML information is the ultimate target of the link.
Internal links can either be without content, i.e., they contain a target document identifier but no text content, or they may be links with text content. We have defined two different ways of marking these two types of links.

The reason we have defined two types of links is to enable us to easily distinguish for validation purposes between links which must never have content and links which can.

Links without Content (cdr:ref)

Pure links are made using a "cdr:ref" attribute inside an element that is used for linking. For example:

A link to a term record in the terminology file:

<Diagnosis cdr:ref='CDR0000078124'/>

A link to a person record.

<PrincipalInvestigator cdr:ref='CDR0061004702'/>

There is no text content in the example Diagnosis and PrincipalInvestigator elements.

Links with Content (cdr:href)

Links with text content contain a "cdr:href" attribute. They are generally embedded in some surrounding text. They work very much like HTML links. For example:

Patients with high <Glossary cdr:href='CDR0000205566'>white blood cell counts</Glossary> should consider ...

The value associated with the cdr:ref or cdr:href attribute is always a CDR ID in full 10 digit normalized form. It must contain the letters "CDR" followed by a 10 digit unique CDR document identifier.

External Links

External links point to resources outside the CDR. These might be web pages, graphics, CGI programs, downloadable files, or whatever can be accessed through a computer or network. The CDR server does not currently validate these links. Currently, any

of them may contain text content in the linking element, in addition to the linking attribute value.

External links are made using the cdr:xref attribute, for example:

More information on diabetes can be found at the National Library of Medicine <Hlink cdr:xref='http://www.nlm.nih.gov/medlineplus/'>Medline Plus</Hlink> website.

"Hlink" and most other element tags in this document are artificial names made up just to serve as examples.

Linking to Fragments

Within the CDR, links can be made to individual fragments within a document rather than to a document as a whole. This is done using the '#fragment' semantics also used in HTML. For example:

The PDQ breast cancer summary contains a good description of <Target cdr:href='CDR0000010013#_14'>hormone replacement therapy</Target>

In this example, the link is to document CDR0000010013, and within that, to a specific element tagged with the cdr:id attribute value "_14".

Links may also be made to other elements in the same document For these types of links, use of the document id is optional. For example, when linking from one element in CDR0001234567 to another element in the same document, either of the following links is acceptable:

<FooLink cdr:ref=’CDR0000123456#_6’/>

<FooLink cdr:ref=’#_6’/>

Fragment Identifiers

The CDR software allows any element that has a cdr:id attribute to serve as the target of a fragment link. If an element is defined in the schema for its document type as allowing a cdr:id attribute, and if the attribute is actually present, cdr:ref and cdr:href links can link to it.
cdr:id attributes must be unique within a document. If a document has two elements with the same cdr:id attribute, the document will fail validation.

cdr:id attributes are normally created and assigned programmatically inside the server when a document is stored. Users do not need to add them to an element. cdr:ids assigned by the server will have the form "_n..." where "n..." is a series of one or more digits, for example:

"_2"
"_19"

"_148"

The program that creates these cdr:ids will never assign the same one twice in the same document. However, it is possible for a user to add or modify cdr:id attributes and mistakenly create a duplicate id. A common cause of this error is cutting and pasting information from one document into a different one. If the data that is copied includes any cdr:ids, they may conflict with cdr:ids that are already present in the target doc.

There is no special format required for a fragment identifier value. The underscore plus digits format is simply the one created by the server program. The following example in a different format is also perfectly legal:
<Section cdr:id=’Hormone’>…

Another document might need to include the same section, also calling it a section. The other document might have a link something like this:

<Section cdr:ref=’CDR0000123456#Hormone’/>

The content of the fragment identifiers is any arbitrary string. The only requirements are that the characters chosen be legal to use in an XML attribute, that the full identifier string be unique within the document, and that links to the fragment exactly match the fragment identifier, character by character.

The same fragment identifier might be used in many documents, so long as it is only used once in each document.

A user can be certain that if an element does not contain a fragment identifier, there is no direct link to it. Beware however because it is still possible for there to be a link to a higher level element which contains this element.

See "Link Validation" below for a discussion of how fragment identification is validated.

Link Types
Link validations work on “types” of links. An authorized user can create or modify a link type on a CDR server by using the "Manage Linking Tables" function in the Administrative Subsystem. As of March 2009, there are 39 different link types defined. Examples include:

Condition

Country

Diagnosis

Person

Summary

etc.

Typically, link types should be created or modified on a test server (e.g. "Mahler" or "Franck") and tested before being created or modified on the production server.
The Manage Linking Tables administrative function works by updating database tables that control link validation. The software reads the linking tables to find out what link type is associated with each particular XML element, what that type can link to, and what constraints there are on the targets of the links.

These linking tables do not duplicate the function of our XML schemas. The schemas specify which elements can contain cdr:ref, cdr:href , or cdr:xref attributes, and whether those attributes are required or optional. The linking tables supplement the schema information by describing the legal targets of the links.

The Manage Linking Tables function and its underlying database linking tables support the following capabilities:

Define a link type and give it a name.

Declare what document types and elements of each type can contain a link of this type. Each of the elements must be separately defined in a schema for the document type that contains them, with an appropriate cdr:ref or other linking attribute. The schema specifies that an element can be a link by declaring a cdr:ref or href in the element. The linking tables go further to say this is a link of a specific link type, e.g., a Diagnosis link, a Person link, etc.
Declare what document type can serve as the target of links of this link type.

Declare what kind of version the link must go to. A link can be defined as targeting a published version, a version (whether publishable or not) or just a current working document. If a version or a publishable version is specified, validation will check that such a version exists.

Define custom link type properties. These are described in a separate section below.

[Note: the term "link type" as used here should not be confused with the internal/external distinction or cdr:ref/cdr:href distinction. As used here, a "link type" is a combination of the above declarations and definitions that make the type.]

Custom Link Type Properties

In addition to defining source document types and element names and target document types, the Manage Linking Tables function also allows an administrative user to define customized "properties" for a link. These properties are rules that restrict the target of the link based on content of the linked-to document.
Currently, only one such property, "LinkTargetContains", is implemented.

A user can say that the target of the link must contain a particular field with a particular value. For example:
We might want a particular link type to only link to Term documents that are terms describing a health condition. Such a link would only be valid if the Term document linked-to contains a TermTypeName element with the value "Index term".
To specify this restriction on links, an administrator would make the following edits in the Link Type definition for the link:

Property: [x] LinkTargetContains

PropertyValue: /Term/TermType/TermTypeName == "Index term"

The "==" (two equal signs) relationship specifies that the element must contain the specified value.

An administrator can also specify that the document linked-to must NOT contain an element with a specified value. This is done using the "!=" (exclamation point, equal sign) relation. For example:
Property: [x] LinkTargetContains

PropertyValue: /Term/TermType/TermTypeName != "Semantic type"

A link to any term would be valid in that case, except one that has a TermTypeName of "Semantic type".
Restriction rules can be combined using "AND", "OR" and "AND NOT" boolean operators, and can be grouped using parentheses. For example, the following rule says that a target Term can be an Index term or a Diagnosis, but can't be a genetic condition:

(/Term/TermType/TermTypeName == "Index term" OR

 /Term/TermType/TermTypeName == "Diagnosis") AND

 /Term/SemanticType/@cdr:ref != "CDR0000256156"
In the above example, the SemanticType is specified by using the CDR ID in the cdr:ref of the SemanticType element of the linked-to Term. The reason for this is that the software processing these custom properties is not sophisticated enough to follow chains of links to determine what is valid or not. In this case, we'd have to examine a Term document that is not the Term linked to by the original document, but by the Term linked to by the term linked to by the original document. The chain of links looks like this:
InScopeProtocol -> Term1 -> Term2

Where "Term1" might be something like "Colon cancer" and Term2 is the semantic type of "Colon cancer", which happens not to be "Genetic condition" (stored in document 256156)
Pick List Extensions

The custom properties defined for a link type are not only used for validation. They can also be used to generate pick lists of values for use in XMetal. For example, if a particular link can only contain a Diagnosis term and nothing else, the XMetal XML editor can request a list of Diagnosis terms on behalf of a user. This enables the user to pick a valid Diagnosis term without having to know in advance which terms are Diagnoses and which are something else.
The situation regarding pick lists turned out to be more complicated than just including valid values and excluding invalid values. The problem is that usage rules can change over time. Administrators might decide that link targets that were valid at some time should not be used any longer. But it may not be practical to edit every document containing one of these links. It may only be desired that no new links be made to certain link targets.

The way this is accomplished is to leave alone the rule specifying what is or is not a valid target for the link, but to add one or more qualifiers to what can appear in a pick list. The idea is that some values that are still valid will not appear in a pick list, and will therefore not be picked by a user as the target of this particular link type.

Specifying these pick list extensions is done using two additional relationships:

"+=" (plus sign, equal sign) adds a value to a pick list.

"-=" (minus sign, equal sign) eliminates a value from a pick list.

For example, assume that we have links to diagnosis terms, and old documents that link to the now unused term "Ear lobe cancer". We don't want to invalidate all of the documents that currently link to "Ear lobe cancer", but we don't want it to be used in the future. We could then specifiy:

/Term/TermType/TermTypeName == "Diagnosis" AND

/Term/PreferredName -= "Ear lobe cancer"

Links to Earl lobe cancer are still perfectly valid, but they won't appear in any pick list for this link type.
Note: There is probably no use case for the "+=" relationship, but it's included anyway for completeness.

Logical Relationship Connectives.

The four relationships ("==", "!=", "+=", "-=") can be combined in any order with the AND, OR and AND NOT relationships, and grouped as desired with parentheses, which can be nested if desired.

In a fit of exuberance, the programmer added two alternative forms for the AND and OR connectives:

"&" (ampersand) = "AND"

"|" (vertical bar) = "OR"

They can also be used in place of AND or OR.

Whitespace is disregarded in rule specifications. All of the following are equivalent:

a. X == Y AND B != C

b. X == Y AND

B == C

c. X==Y&B!=C

Link Validation

At the time of this writing, the server software can perform the following link validations. The validations are only performed for internal links to other CDR documents, not to external resources. cdr:ref and cdr:href links can be validated in the server. cdr:xref links cannot.
Target exists.
The CDR document linked-to by a link actually exists.
Linking element is legal as a link source.
Schema validation software will complain if a linking element contains a cdr:ref or href attribute which is not defined as allowable for this particular field.

In addition, link validation will complain if no "link type" has been defined for this document type / element name combination.

Link target is legal for this link.
A server database table, updated using the Manage Link Types administrative function, defines what the legal targets for a link are. It might say, for example, that a PrincipalInvestigator field may only link to a Person document. If an editor inadvertently links to a Terminology document, a Sumary document, or any other document type, the server will declare an error.

A link source can be defined to allow more than one legal target type. For example, it might be legal to link either to a person or to an organization for certain source elements.

Link fragment exists.
When a document is stored in the server, it is scanned for fragment identifiers. These are put in a table. When a link is made to a fragment of a document, we check this table to be sure that the target document actually contains the fragment that the source links to. If not, we declare an error.

Link fragment is unique.
The server automatically checks each document to be sure that it does not contain any duplicate fragment identifiers.

Document may be deleted.
A user can query the server to get a list of all documents which link to a particular document. The query reports the ID, title and target fragment (if any) for each source link. This might be used before attempting to delete a document, or for other purposes.

This is not a validation per se, but it aids in creating valid links.

Fragment may be deleted.
If an editor deletes a fragment identifier attribute but some document links to that fragment, the server will notice the missing fragment id and declare an error.

Target document contains expected data.
Any custom link properties defined for a link type (see above) are checked to be sure that each link in a document that is one of those link types conforms to the specified rules.
